**BBAMEM 75989** 

# Na<sup>+</sup>- and anion-dependent Mg<sup>2+</sup> influx in isolated hepatocytes

# Theodor Günther and Vera Höllriegl

Institute of Molecular Biology and Biochemistry, Free University of Berlin, Berlin (Germany)

(Received 22 February 1993)

Key words: Magnesium ion influx; Cotransport; Sodium ion; Chloride; Bicarbonate; Phosphate; (Rat hepatocyte)

Hepatocytes, which were  $Mg^{2+}$ -depleted during isolation, took up  $Mg^{2+}$  during reincubation.  $Mg^{2+}$  uptake was dependent on the concentration of extracellular  $Mg^{2+}$ ,  $Na^+$ ,  $Cl^-$ , bicarbonate and phosphate. Li<sup>+</sup> and choline<sup>+</sup> did not substitute for extracellular  $Na^+$  in  $Mg^{2+}$  influx.  $Mg^{2+}$  influx was maximal when all three anion species were present, and did not occur when these anions were replaced by gluconate. Bicarbonate, phosphate and  $Cl^-$  could substitute for each other.  $Mg^{2+}$  uptake in hepatocytes was inhibited by *p*-chloromercuribenzene sulfonate, ouabain, gramicidin D, amiloride and verapamil. The results were explained by the assumption that net  $Mg^{2+}$  influx in hepatocytes is operating via electroneutral  $Na^+$ ,  $Mg^{2+}$ /anion cotransport driven by the  $Na^+$  gradient. However, electrogenic  $Mg^{2+}$  uptake gated by extracellular  $Na^+$  and anions could not be excluded.

#### Introduction

Preceding experiments revealed net Mg<sup>2+</sup> influx in Mg<sup>2+</sup>-depleted Yoshida ascites tumor cells [1], cardiomyocytes [2], MDCK cells [3] and reticulocytes [4]. Net Mg<sup>2+</sup> influx stopped when the physiological intracellular Mg<sup>2+</sup> concentration was reached [1–3], indicating regulation of net Mg<sup>2+</sup> influx due to feed-back inhibition by intracellular Mg<sup>2+</sup>. Net Mg<sup>2+</sup> influx into Yoshida cells was performed by electroneutral Mg<sup>2+</sup>/HCO<sub>3</sub><sup>-</sup> cotransport [1]. For other cells, the mechanism of net Mg<sup>2+</sup> influx has not been defined so far. Therefore, we investigated the mechanism of net Mg<sup>2+</sup> uptake by isolated hepatocytes, which were Mg<sup>2+</sup>-depleted during isolation.

## Materials and Methods

Preparation of hepatocytes

Isolated perfused rat livers were dispersed by a two-step procedure of Ca<sup>2+</sup> removal, followed by collagenase (Sigma, type I) treatment according to Seglen [5]. During collagenase treatment, Mg<sup>2+</sup>-free medium

Correspondence to: T. Günther, Institute of Molecular Biology and Biochemistry, Free University of Berlin, Arnimallee 22, D-W-1000 Berlin 33. Germany.

Abbreviations:  $[X]_o$ ,  $[X]_i$ , extracellular, intracellular concentrations of the corresponding ions or salts;  $P_i$ , inorganic phosphate; PCMBS, p-chloromercuribenzene sulfonate; SITS, 4-acetamido-4'-isothio-cyanatostilbene-2,2'-disulfonate; Hepes, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; TCA, trichloroacetic acid.

was used. The isolated hepatocytes were filtered through two layers of gauze, washed twice in prewarmed (37°C)  $Mg^{2+}$ -free and albumin-free  $Na^+$  medium (see below) by centrifugation at  $44 \times g$  for 1 min and purified from damaged cells and cell debris by Percoll centrifugation.

For Percoll centrifugation, 1 volume cells was suspended in 4 volumes  $Mg^{2+}$ -free and albumin-free Na<sup>+</sup> medium and mixed 1:1 (v/v) with 70% Percoll (Pharmacia) in  $Mg^{2+}$ -free and albumin-free Na<sup>+</sup> medium and centrifuged at  $1500 \times g$  for 5 min.

 $Mg^{2+}$  influx

The sedimented hepatocytes (95% viable by Trypan blue exclusion) were resuspended in prewarmed (37°C) Na<sup>+</sup> medium. Cell concentration amounted to 2–3% (v/v) corresponding to  $(1-2)\cdot 10^6$  cells/ml. Cell suspensions were gassed with 95%  $O_2/5\%$   $CO_2$  or with 100%  $O_2$  when bicarbonate-free medium was used.

At the beginning of incubation and after various times as indicated, 1-ml aliquots of the cell suspensions were centrifuged (1 min at  $44 \times g$ ). The supernatant was sucked off and 1 ml 5% (w/v) TCA was added to the pellet. In the experiments with increasing [Mg<sup>2+</sup>]<sub>o</sub>, the cells were washed once with Mg<sup>2+</sup>- and Ca<sup>2+</sup>-free incubation medium containing 2 mM EDTA. After homogenisation and centrifugation, Mg<sup>2+</sup> concentration of the TCA extract was measured by atomic absorption spectrophotometry (Philips, SP 9). Protein content of the TCA precipitates was measured with the Pierce BCA Protein Assay [6]. Mg<sup>2+</sup> influx was calculated from the increase of cellular Mg<sup>2+</sup> content.

# Cellular Na +, K + and ATP content

For determination of cellular Na<sup>+</sup> and K<sup>+</sup> contents, the cells were once washed in cold choline Cl medium and sedimented. The supernatant was sucked off and 1 ml 5% TCA was added to the pellet as described above. Na<sup>+</sup> and K<sup>+</sup> concentration of the TCA extract was measured by flame photometry (KLiNa-flame, Beckman). ATP content of liver and isolated hepatocytes was determined enzymatically in TCA extracts by an optical test according to the instructions of the manufacturer (Sigma, procedure No. 336-UV).

## Media

Incubation was performed in Na<sup>+</sup> medium, containing (in mM): 125 NaCl, 15 NaHCO<sub>3</sub>, 5 KCl, 1 KH<sub>2</sub>PO<sub>4</sub>, 5 glucose, 1 adenosine, 2.4 CaCl<sub>2</sub>, 0.9 MgCl<sub>2</sub>, 50 g/l bovine serum albumin (Serva, fraction V), 20 Hepes-NaOH (pH 7.4), and adjusted to a final pH of 7.4. For preparation of albumin-free Na<sup>+</sup> medium, albumin was omitted and  $[CaCl_2]_0$  was reduced to 1.2 mM and  $[MgCl_2]_0$  to 0.6 mM.

When bicarbonate-free medium or media with different [HCO<sub>3</sub>]<sub>0</sub> were used, NaHCO<sub>3</sub> was substituted by NaCl. For media with different [P<sub>i</sub>]<sub>0</sub>, phosphate was added as Na<sub>2</sub>HPO<sub>4</sub>. For preparing K<sup>+</sup>, choline<sup>+</sup> or Li<sup>+</sup> medium, Na<sup>+</sup> salts were substituted by K<sup>+</sup>, choline<sup>+</sup> or Li<sup>+</sup> salts, and Hepes-Tris was used for buffering.

Concentration of free  $Mg^{2+}$  and free  $Ca^{2+}$  in media

Concentration of free Mg<sup>2+</sup> and Ca<sup>2+</sup> in the media was measured by means of an Mg<sup>2+</sup>- and Ca<sup>2+</sup>-sensitive electrode (Microlyte 6, Kone Instruments, Espoo, Finland).

## **Results and Discussion**

## Characterization of the isolated hepatocytes

During isolation of hepatocytes  $Mg^{2+}$  content was reduced from  $64.5 \pm 2.2$  to  $47.9 \pm 1.5$  nmol/mg protein (mean  $\pm$  S.E. of eight experiments).  $K^+$  and ATP contents were also reduced, whereas  $Na^+$  content was increased (Table I).

The major part of Mg<sup>2+</sup> depletion during cell isolation might have been caused by reduction of ATP content, in the sense that Mg<sup>2+</sup> was released from ATP because of the lower Mg<sup>2+</sup> binding to ADP than to ATP. This might have led to a transient increase in free [Mg<sup>2+</sup>]<sub>i</sub> and consequently to an efflux of Mg<sup>2+</sup>. This mechanism would be in analogy with Mg<sup>2+</sup> efflux from erythrocytes and other cells, in which Mg<sup>2+</sup> efflux was induced by loading the cells with Mg<sup>2+</sup> [7,8].

After reincubation of isolated hepatocytes in Na<sup>+</sup> medium, intracellular Na<sup>+</sup>, K<sup>+</sup> and ATP concentrations were rapidly restored (Table I). After reincubation in Na<sup>+</sup> medium with different anion contents, the

TABLE I

 $K^+$ ,  $Na^+$  and ATP content of rat liver cells before and after isolation and after reincubation in  $Na^+$  medium

Mean ± S.E. of eight experiments.

|                        | Content (nmol/mg protein) |              |                |
|------------------------|---------------------------|--------------|----------------|
|                        | K+                        | Na +         | ATP            |
| Before isolation       | 601 ± 26                  | a            | 29.9 ± 1.2     |
| After isolation 15 min | $303 \pm 11$              | $335 \pm 13$ | $13.3 \pm 0.7$ |
| after reincubation     | 490 ± 9                   | 124 ± 4      | $23.6 \pm 1.1$ |
| after reincubation     | $521\pm10$                | 117± 5       | $26.4 \pm 0.9$ |
| after reincubation     | $531\pm12$                | 102 ± 4      | $28.0 \pm 1.3$ |

<sup>&</sup>lt;sup>a</sup> The major part of Na<sup>+</sup> in liver is extracellularly localized.

same results were obtained (data not shown). Therefore, the different rate of Mg<sup>2+</sup> influx in the presence of different anions (Table II) was not caused by reduced ATP concentration and energy state of the cells.

Mg<sup>2+</sup> uptake by isolated Mg<sup>2+</sup>-depleted hepatocytes occurred at a slower rate (Fig. 1) than restoration of intracellular Na<sup>+</sup>, K<sup>+</sup> and ATP (Table I). Therefore, most of the Mg<sup>2+</sup> uptake took place when ATP content and energy state of the cells had already been restored. Control experiments, in which the cells were incubated in Mg<sup>2+</sup>-free Na<sup>+</sup> medium for 15 min (to restore [ATP]<sub>i</sub>, [Na<sup>+</sup>]<sub>i</sub> and [K<sup>+</sup>]<sub>i</sub>) followed by addition of Mg<sup>2+</sup> to start Mg<sup>2+</sup> influx, did not yield a significantly different Mg<sup>2+</sup> influx (data not shown).

# Na + dependency of Mg 2+ influx

Since Mg<sup>2+</sup> uptake in Yoshida ascites tumor cells was performed by electroneutral Mg<sup>2+</sup>/HCO<sub>3</sub><sup>-</sup> cotransport [1], we tested whether Mg<sup>2+</sup> influx in hepatocytes is operating by an electroneutral mechanism or

TABLE II

Effect of extracellular  $Cl^-$ ,  $HCO_3^-$  and  $P_i$  on  $Mg^{2+}$  influx ( $\Delta Mg^{2+}$ ) in isolated hepatocytes

Addition of anions as indicated. When anion species were omitted, they were equimolarly substituted by gluconate. Mean  $\pm$  S.E. of four experiments in duplicates.

| [Cl <sup>-</sup> ] <sub>o</sub><br>(133 mM) | [HCO <sub>3</sub> ] <sub>o</sub> (15 mM) | $\begin{aligned} \left[ \mathbf{P_i} \right]_{0} \\ (1.0 \text{ mM}) \end{aligned}$ | ΔMg <sup>2+</sup><br>(nmol/mg<br>protein per h) |
|---------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------|
| +                                           | +                                        | +                                                                                   | 12.0 ± 0.4                                      |
| +                                           | +                                        | _                                                                                   | $5.4 \pm 0.3$                                   |
| -                                           | +                                        | +                                                                                   | $3.8 \pm 0.5$                                   |
| +                                           | _                                        | +                                                                                   | $6.0 \pm 0.6$                                   |
| _                                           | +                                        |                                                                                     | $3.0 \pm 0.5$                                   |
| +                                           | _                                        |                                                                                     | $2.5 \pm 0.6$                                   |
| _                                           | _                                        | +                                                                                   | $1.3 \pm 0.2$                                   |
| -                                           | _                                        | _                                                                                   | $0.0 \pm 0.2$                                   |

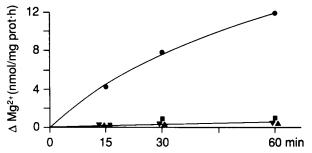



Fig. 1. Mg<sup>2+</sup> uptake by isolated hepatocytes. Hepatocytes were incubated in Na<sup>+</sup> medium (●), K<sup>+</sup> medium (▲), Li<sup>+</sup> medium (■) or choline<sup>+</sup> medium (▼). Mean of four experiments.

whether it is dependent on the membrane potential. When extracellular  $Na^+$  was replaced by  $K^+$  to depolarize the membrane potential, an electrogenic system should be affected. As shown in Fig. 1,  $Mg^{2^+}$  uptake by hepatocytes was prevented when  $Na^+$  was substituted by  $K^+$ . This result shows that  $Mg^{2^+}$  influx may depend on the membrane potential or on  $[Na^+]_o$ .

Therefore, we measured Mg<sup>2+</sup> influx in media in which Na<sup>+</sup> was replaced by Li<sup>+</sup> or choline<sup>+</sup>. As also shown in Fig. 1, in Li<sup>+</sup> and choline<sup>+</sup> medium a significant uptake of Mg<sup>2+</sup> did not occur, indicating that Mg<sup>2+</sup> influx is specifically dependent on [Na<sup>+</sup>]<sub>0</sub>.

The effect of  $[\mathrm{Na^+}]_{\mathrm{o}}$  on  $\mathrm{Mg^{2+}}$  influx obeyed saturable, non-cooperative kinetics (Michaelis-Menten kinetics,  $K_{\mathrm{m}} = 50$  mM,  $V_{\mathrm{max}} = 15$  nmol  $\mathrm{Mg^{2+}/mg}$  protein per h, Fig. 2).

From this result it can be suggested that 1 extracellular Na<sup>+</sup> is needed in Mg<sup>2+</sup> transport. It may be bound to the Mg<sup>2+</sup> transporter which thereafter can transport Mg<sup>2+</sup>, or 1 Na<sup>+</sup> is cotransported together with Mg<sup>2+</sup>. The driving force for this transport may be

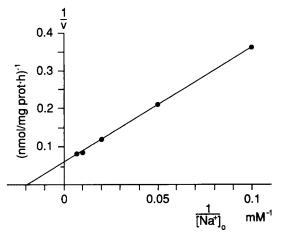



Fig. 2. Na<sup>+</sup> dependency of Mg<sup>2+</sup> influx in hepatocytes. Double-reciprocal plot. NaCl of Na<sup>+</sup> medium was replaced by choline Cl.

Mean of four experiments.

TABLE III

Inhibition of  $Mg^{2+}$  influx  $(\Delta Mg^{2+})$  in hepatocytes

Cells were incubated in Na<sup>+</sup> medium with the addition of inhibitors as indicated. Mean ± S.E. of three experiments.

| Addition     |                         | ΔMg <sup>2+</sup> (nmol/mg protein per h) |  |
|--------------|-------------------------|-------------------------------------------|--|
| Control      | _                       | 11.5 ± 0.9                                |  |
| Gramicidin D | $2.5 \mu \mathrm{g/ml}$ | $1.0 \pm 0.6$                             |  |
| Ouabain      | 1 mM                    | $0.9 \pm 0.3$                             |  |
| PCMBS        | 0.5 mM                  | $0.3\pm0.3$                               |  |

the membrane potential or the extracellular-intracellular Na<sup>+</sup> gradient.

To analyse this mechanism we tested the effect of PCMBS, ouabain and gramicidin D which disturbed or prevented the restoration of the Na<sup>+</sup> and K<sup>+</sup> gradient in the isolated hepatocytes. Ouabain concentration must be high because of the low ouabain sensitivity of rat liver [9]. At 1 mM ouabain the Na<sup>+</sup> gradient of hepatocytes was drastically reduced [10] (data not shown). A low concentration of gramicidin D disturbed the Na<sup>+</sup> gradient [10] (data not shown) and membrane potential [10] without affecting ATP [11]. We found that these substances prevented Mg<sup>2+</sup> uptake by hepatocytes (Table III). The inhibition of Mg<sup>2+</sup> uptake by gramicidin D cannot be caused by reduction of ATP and consequent increase of free [Mg2+]; but must be caused by destruction of the Na<sup>+</sup> gradient or membrane potential. Moreover, these results show that the presence of extracellular Na+ was not sufficient for Mg<sup>2+</sup> influx and that, additionally, there must exist an Na<sup>+</sup> gradient or a membrane potential.

Hence, these results are compatible with Na<sup>+</sup>, Mg<sup>2+</sup> cotransport driven by the Na<sup>+</sup> gradient or the membrane potential. Alternatively, Mg<sup>2+</sup> influx may be performed by Na<sup>+</sup>-gated Mg<sup>2+</sup> uptake driven by the membrane potential. However, the inhibition of Mg<sup>2+</sup> uptake by amiloride (see below), which inhibits Na<sup>+</sup>-coupled cotransport of alanine [9] and hexose [12], may indicate that Na<sup>+</sup> is cotransported together with Mg<sup>2+</sup>.

Anion dependency of Mg<sup>2+</sup> influx

Since Mg<sup>2+</sup> uptake by Yoshida cells was performed by electroneutral Mg<sup>2+</sup>/HCO<sub>3</sub> cotransport, Na<sup>+</sup>, Mg<sup>2+</sup> cotransport or Na<sup>+</sup>-gated Mg<sup>2+</sup> influx in hepatocytes may be accompanied by anions either in an electroneutral or electrogenic way. Therefore, we tested the effect of extracellular anions.

Maximal Mg<sup>2+</sup> influx was achieved when Cl<sup>-</sup>, HCO<sub>3</sub><sup>-</sup> and P<sub>i</sub> were present in the Na<sup>+</sup> medium. When two or one anion species were present, a lower rate of Mg<sup>2+</sup> influx was obtained (Table II).

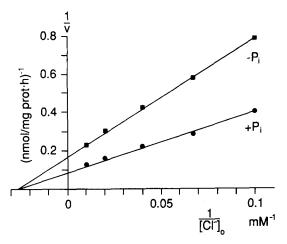



Fig. 3. Effect of  $[Cl^-]_o$  on  $Mg^{2+}$  influx in hepatocytes. Double-reciprocal plot. The cells were incubated in  $P_i$ -containing  $(+P_i)$  and  $P_i$ -free  $Na^+$  medium  $(-P_i)$ .  $Mg^{2+}$  influx at  $[Cl^-]_o = 0$  was subtracted. Mean of four experiments.

When Cl<sup>-</sup>, HCO<sub>3</sub><sup>-</sup> and  $P_i$  were substituted by gluconate,  $Mg^{2+}$  influx was prevented (Table II). This effect was not caused by reduction of free  $[Mg^{2+}]_o$  of the medium (see below).

When the effect of one anion species on Mg<sup>2+</sup> influx was tested in the presence of the other two anion species, Mg<sup>2+</sup> influx revealed saturable, non-cooperative kinetics (Figs. 3 and 4) or a Hill coefficient of 1 (Fig. 5). According to the analogous Michaelis-Menten kinetics saturable, non-cooperative kinetics or a Hill coefficient of 1 indicate that each anion was limiting the rate of Mg<sup>2+</sup> uptake in the presence of the other two anion species.

When  $P_i$  was omitted from the Na<sup>+</sup> medium, Cl<sup>-</sup> dependency of Mg<sup>2+</sup> influx obeyed saturable, non-cooperative kinetics (Fig. 3), indicating that also in the absence of  $P_i$  only 1 Cl<sup>-</sup> was operating in Mg<sup>2+</sup> uptake. The affinity ( $K_m = 38$  mM) was the same as in the presence of  $P_i$  (Fig. 3). This result suggests that  $H_2PO_4^-$  was substituted by  $HCO_3^-$  and that now 2

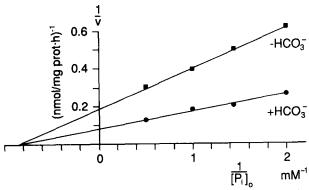



Fig. 4. Effect of  $[P_i]_o$  on  $Mg^{2+}$  influx in hepatocytes. Double-reciprocal plot. The cells were incubated in Na<sup>+</sup> medium (+HCO<sub>3</sub><sup>-</sup>) or in HCO<sub>3</sub><sup>-</sup>-free Na<sup>+</sup> medium (-HCO<sub>3</sub><sup>-</sup>).  $Mg^{2+}$  influx at  $[P_i]_o = 0$  was subtracted. Mean of four experiments.

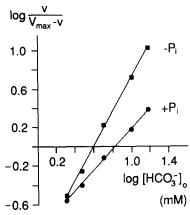



Fig. 5. Effect of  $[HCO_3^-]_o$  on  $Mg^{2+}$  influx in hepatocytes. Hill plot. The cells were incubated in  $Na^+$  medium  $(+P_i)$  or in  $P_i$ -free  $Na^+$  medium  $(-P_i)$ .  $Mg^{2+}$  influx at  $[HCO_3^-]_o = 0$  was subtracted. Mean of four experiments.

 $HCO_3^-$  were simultaneously operating in  $Mg^{2+}$  influx together with 1 Cl<sup>-</sup>. Indeed, when the effect of  $HCO_3^-$  on  $Mg^{2+}$  influx was investigated in the absence of  $P_i$ , the Hill plot revealed a Hill coefficient of 2 (Fig. 5), indicating that under this condition 2  $HCO_3^-$  were simultaneously operating in  $Mg^{2+}$  influx together with 1 Cl<sup>-</sup>.

 $P_i$  dependency of  $Mg^{2+}$  influx in the absence of  $HCO_3^-$  revealed saturable, non-cooperative kinetics (Fig. 4). Thus, in the presence and absence of  $HCO_3^-$  only 1  $P_i$  was involved in  $Mg^{2+}$  influx. Since the  $pK_2$ -value of phosphate amounts to 6.7 [13],  $P_i$  in the media consists of  $H_2PO_4^-$  and  $HPO_4^{2-}$ . Saturable, non-cooperative kinetics in the absence of  $HCO_3^-$  might indicate that instead of 1  $H_2PO_4^-$  1  $HPO_4^{2-}$  is operating in  $Mg^{2+}$  influx together with 1  $Cl^-$ . Thus, these kinetic experiments showed that three negative charges of anions were simultaneously involved in  $Na^+$ -dependent  $Mg^{2+}$  uptake.

These results can be explained by the assumption that three anions are taken up by hepatocytes together with Na<sup>+</sup> and Mg<sup>2+</sup> in an electroneutral cotransport. The driving force may be the extra-intracellular Na<sup>+</sup> gradient. Mg<sup>2+</sup> influx would be maximal as Na<sup>+</sup>, Mg<sup>2+</sup>/Cl<sup>-</sup>, HCO<sub>3</sub><sup>-</sup>, H<sub>2</sub>PO<sub>4</sub><sup>-</sup> cotransport and would be less active with other combinations of these anions (Table II). However, since the rate of Mg<sup>2+</sup> uptake is low and since there are other mechanisms by which anions and Na<sup>+</sup> are transported, simultaneous uptake of anions and Na<sup>+</sup> was not measured to define Na<sup>+</sup>, Mg<sup>2+</sup>/anion cotransport and its stoichiometry. Therefore, it cannot be excluded that there may be an electrogenic Mg<sup>2+</sup> uptake gated by extracellular Na<sup>+</sup> and anions.

## Ion interactions in media

There may be interactions of ions in the media. When  $[HCO_3^-]_0$  and  $[P_i]_0$  were changed at constant

TABLE IV Effect of  $[Mg^{2+}]_a$  on  $Mg^{2+}$  influx  $(\Delta Mg^{2+})$  in hepatocytes

The cells were incubated in Na<sup>+</sup> medium or in gluconate medium. Mean of 2 experiments. Total  $[Mg^{2+}]_o$  was measured by atomic absorption spectrophotometry, and free  $[Mg^{2+}]_o$  was measured by an  $Mg^{2+}$ -sensitive electrode (Microlyte 6).

|                        | Total [Mg <sup>2+</sup> ] <sub>o</sub> (mM) | Free [Mg <sup>2+</sup> ] <sub>o</sub> (mM) | ΔMg <sup>2+</sup> (nmol/mg protein per h) |
|------------------------|---------------------------------------------|--------------------------------------------|-------------------------------------------|
| Na <sup>+</sup> medium | 0.9                                         | 0.7                                        | 10.3                                      |
|                        | 1.5                                         | 1.2                                        | 12.0                                      |
|                        | 3.0                                         | 2.3                                        | 15.1                                      |
|                        | 6.0                                         | 4.3                                        | 16.0                                      |
| Gluconate medium       | 0.9                                         | 0.6                                        | 0.0                                       |
|                        | 1.5                                         | 0.7                                        | 0.2                                       |
|                        | 3.0                                         | 1.5                                        | 0.1                                       |
|                        | 6.0                                         | 3.0                                        | 0.3                                       |

total  $[Mg^{2+}]_o$ , the interaction and binding of  $Mg^{2+}$  (and  $Ca^{2+}$ ) to albumin and to  $HCO_3^-$  and  $P_i$  may be changed. At pH 7.4 and 5% albumin, approximately one third of total  $Mg^{2+}$  in the media may be bound to albumin [14,15], representing an  $Mg^{2+}$  buffer. Thus, the concentration (or more exactly the activity) of extracellular free  $Mg^{2+}$  may be held constant at changed  $[HCO_3^-]_o$  and  $[P_i]_o$ .  $Mg^{2+}$  buffering by albumin may be effective since the interactions of  $HCO_3^-$  and  $P_i$  with  $Mg^{2+}$  are weak at physiological concentrations [14].

In agreement with this conclusion, measuring free  $[Mg^{2+}]_o$  in the absence or presence of 1 mM  $P_i$  and in the absence or presence of 15 mM  $HCO_3^-$  did not reveal significantly different values.

When  $Cl^-$ ,  $HCO_3^-$  and  $P_i$  were substituted by gluconate, the interaction between  $Mg^{2+}$  and anions may be changed either by affecting the activity coefficient of  $Mg^{2+}$  or by weak binding of  $Mg^{2+}$  to gluconate. The apparent association constant of  $Mg^{2+}$  gluconate was determined to be log K=0.70 [16]. In the medium a weak interaction between  $Mg^{2+}$  and gluconate may be compensated by the  $Mg^{2+}$  buffer (albumin). In order to analyse whether these effects play a significant role,  $Mg^{2+}$  dependency of  $Mg^{2+}$  uptake and free  $[Mg^{2+}]_0$  were measured in  $Na^{4-}$  and gluconate medium.

As shown in Table IV, when  $[Mg^{2+}]_o$  was increased, there was no significant  $Mg^{2+}$  influx in gluconate medium, whereas at similar  $[Mg^{2+}]_o$  in Na<sup>+</sup> medium,  $Mg^{2+}$  was taken up, depending on  $[Mg^{2+}]_o$ . Therefore, interaction of  $Mg^{2+}$  with gluconate was not the reason why  $Mg^{2+}$  influx did not occur in gluconate medium (Table II). The values taken from Table IV revealed saturable, non-cooperative kinetics with  $K_m$  for  $Mg^{2+}$  uptake of 0.6 mM (Fig. 6). Hence,  $Mg^{2+}$  uptake by the hepatocytes occurred at physiological free  $[Mg^{2+}]_o$ .

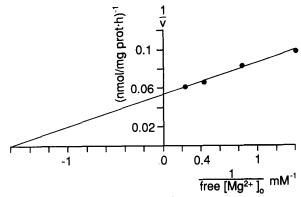



Fig. 6. Double-reciprocal plot of Mg<sup>2+</sup> influx in hepatocytes incubated in Na<sup>+</sup> medium. Values were taken from Table IV.

Accuracy of  $[HCO_3^-]_o$  should also be considered. In the media, pH was adjusted to 7.4 and remained constant throughout gassing with 95%  $O_2/5\%$   $CO_2$ . In the presence of NaHCO<sub>3</sub>, there will be  $HCO_3^-$  from NaHCO<sub>3</sub> as well as from carbonic acid (dissolved and dissociated  $CO_2$ ). However, with the pH and [NaHCO<sub>3</sub>]<sub>o</sub> used the concentration of  $CO_3^{2-}$  could be neglected and total  $[HCO_3^-]_o$  was equivalent to that of the bicarbonate added [13].

## Effect of inhibitors

As described above, Mg<sup>2+</sup> influx was inhibited by various substances (Table III), which disturbed the Na<sup>+</sup> gradient and thus the driving force.

An anion-coupled cotransport was concluded for the uptake of Zn<sup>2+</sup> by human erythrocytes, which may function as (Zn, 2HCO<sub>3</sub>, Cl)<sup>-</sup> [17], (Zn, CO<sub>3</sub>, Cl)<sup>-</sup> or as (Zn, HCO<sub>3</sub>, Cl, OH)<sup>-</sup> cotransport [18] via band 3 protein (capnophorin).

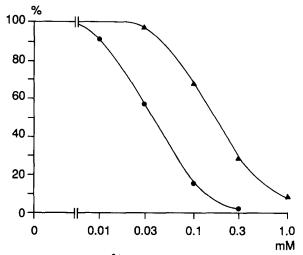



Fig. 7. Inhibition of Mg<sup>2+</sup> influx in hepatocytes by amiloride (▲) and verapamil (●). The cells were incubated in Na<sup>+</sup> medium. Mean of three experiments. 100% corresponds to an Mg<sup>2+</sup> uptake of 11.2±1.0 (mean±S.E.) nmol/mg protein per h.

TABLE V

Effect of  $Ca^{2+}$  and albumin in medium on  $Mg^{2+}$  influx  $(\Delta Mg^{2+})$  in hepatocytes

Cells were incubated in Na $^+$  medium with different contents of Ca $^{2+}$  and albumin. In albumin-free medium [Ca $^{2+}$ ]<sub>o</sub> and [Mg $^{2+}$ ]<sub>o</sub> were reduced to 1.2 and 0.6 mM. Mean $\pm$ S.E. of four experiments.

| [Ca <sup>2+</sup> ] <sub>o</sub> (mM) | [Mg <sup>2+</sup> ] <sub>o</sub> (mM) | Albumin<br>(g/l) | ΔMg <sup>2+</sup> (nmol/mg protein) |                |  |
|---------------------------------------|---------------------------------------|------------------|-------------------------------------|----------------|--|
|                                       |                                       |                  | 60 min                              | 90 min         |  |
| 2.4                                   | 0.9                                   | 50               | $11.3 \pm 1.2$                      | 17.8 ± 1.1     |  |
| 5.0                                   | 0.9                                   | 50               | $10.2 \pm 0.5$                      | $17.6 \pm 1.0$ |  |
| _                                     | 0.9                                   | 50               | $4.0 \pm 0.6$                       | $5.0 \pm 0.5$  |  |
| 1.2                                   | 0.6                                   | -                | $4.2 \pm 0.5$                       | $3.0 \pm 1.0$  |  |

 ${\rm Mg^{2^+}}$  uptake was not significantly inhibited by 30  $\mu{\rm M}$  SITS and 100  $\mu{\rm M}$  bumetanide (data not shown), indicating that band 3 protein (capnophorin) and Na<sup>+</sup>, K<sup>+</sup>, 2 Cl<sup>-</sup> cotransport which are inhibited by these inhibitors [19] are not involved in  ${\rm Mg^{2^+}}$  uptake by hepatocytes.

In addition, we tested the effect of verapamil and amiloride.  $Mg^{2+}$  uptake in  $Mg^{2+}$ -depleted cardiac myocytes [2] and MDCK cells [3] was inhibited by 90% by 25  $\mu$ M verapamil.  $Mg^{2+}$  uptake in hepatocytes was also inhibited by verapamil (IC<sub>50</sub> = 35  $\mu$ M, Fig. 7). Possibly,  $Mg^{2+}$  influx in hepatocytes is similar to  $Mg^{2+}$  influx in cardiomyocytes and MDCK cells, in which the mechanism of  $Mg^{2+}$  influx has not been characterized so far.

Although Mg<sup>2+</sup> uptake was inhibited by verapamil there seems to be no relationship between Mg<sup>2+</sup> uptake and Ca2+ uptake. Mg2+ uptake in MDCK cells was not significantly different at zero and 5 mM [Ca<sup>2+</sup>]<sub>0</sub> [3]. Also, in hepatocytes Mg<sup>2+</sup> uptake was not significantly changed when [Ca<sup>2+</sup>]<sub>o</sub> was increased from 2.4 to 5 mM (Table V) which corresponds to free [Ca<sup>2+</sup>]<sub>o</sub> of 1.2 and 2.9 mM, as measured by Microlyte 6. In Ca2+free or albumin-free medium Mg<sup>2+</sup> influx was reduced (Table V) due to cell injury as was seen by reduced Trypan blue exclusion and loss of [K+], (data not shown). Elevation of [Mg<sup>2+</sup>]<sub>o</sub> to 5 mM had no effect on <sup>45</sup>Ca<sup>2+</sup> uptake by MDCK cells [3]. These results suggest that Ca<sup>2+</sup> and Mg<sup>2+</sup> may enter cells by separate pathways. Moreover, the inhibition of Mg2+ uptake by verapamil shows that verapamil does not selectively block Ca<sup>2+</sup> influx but can also inhibit other influx systems, e.g. for Mg<sup>2+</sup> or Na<sup>+</sup> [20].

Amiloride inhibited Na<sup>+</sup>-coupled transport of alanine [9] and hexose [12]. Na<sup>+</sup>-dependent  $Mg^{2+}$  influx in hepatocytes was also inhibited by amiloride (IC<sub>50</sub> = 0.18 mM, Fig. 7). The mechanism by which Na<sup>+</sup>-coupled cotransport systems are inhibited by amiloride may be the interaction of amiloride at the extracellular Na<sup>+</sup>-binding site. The analogous mechanism of

amiloride, although with different affinities [21], may hold for the inhibition of Na<sup>+</sup> channels, Na<sup>+</sup>/H<sup>+</sup>, Na<sup>+</sup>/Ca<sup>2+</sup> and Na<sup>+</sup>/Mg<sup>2+</sup> exchange by amiloride.

#### Conclusion

The experiments showed that Mg<sup>2+</sup> uptake in hepatocytes depended on [Na<sup>+</sup>]<sub>o</sub> and that Mg<sup>2+</sup> influx was optimal in the presence of extracellular Cl<sup>-</sup>, HCO<sub>3</sub><sup>-</sup> and H<sub>2</sub>PO<sub>4</sub><sup>-</sup>. Mg<sup>2+</sup> uptake was inhibited by amiloride as was found for Na<sup>+</sup>-coupled uptake of alanine [9] and hexose [12]. The results can be explained by the assumption that Mg<sup>2+</sup> influx in hepatocytes is operating via a mechanism of its own, which may be electroneutral Na<sup>+</sup>, Mg<sup>2+</sup>/anion cotransport, driven by the Na<sup>+</sup> gradient. However, since cotransport of Na<sup>+</sup> and anions was not directly measured electrogenic Mg<sup>2+</sup> uptake gated by extracellular Na<sup>+</sup> and anions cannot be excluded.

### References

- 1 Günther, T., Vormann, J. and Averdunk, R. (1985) FEBS Lett. 197, 297-300.
- 2 Quamme, G.A. and Rabkin, S.W. (1990) Biochem. Biophys. Res. Commun. 167, 1406-1412.
- 3 Quamme, G.A. and Dai, L.J. (1990) Am. J. Physiol. 259, C521–C525.
- 4 Günther, T. and Vormann, J. (1991-1992) Magnesium Trace Elem. 10, 17-20.
- 5 Seglen, P.O. (1973) Expt. Cell Res. 82, 391-398.
- 6 Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J. and Klenk, D.C. (1985) Anal. Biochem. 150, 76–85.
- 7 Günther, T., Vormann, J. and Höllriegl, V. (1990) Biochim. Biophys. Acta 1023, 455-461.
- 8 Günther, T. and Vormann, J. (1990) Magnesium Trace Elem. 9, 279-282.
- 9 Renner, E.L., Lake, J.R., Cragoe, E.J., Jr. and Scharschmidt, B.F. (1988) Biochim. Biophys. Acta 938, 386-394.
- 10 Kristensen, L.O. and Folke, M. (1986) Biochim. Biophys. Acta 855, 49-57.
- 11 Kristensen, L.O. (1980) J. Biol. Chem. 255, 5236-5243.
- 12 Cook, J.S, Shaffer, C. and Cragoe, E.J., Jr. (1987) Am. J. Physiol. 253, C199-C204.
- 13 Umbreit, W.W., Burris, R.H. and Stauffer, J.C. (1959) Manometric Techniques, pp. 1-338, Burgess, Minneapolis, MN.
- 14 Copeland, B.E. and Sunderman, F.W. (1952) J. Biol. Chem. 197, 331-341
- 15 Willis, M.J. and Sunderman, F.W. (1952) J. Biol. Chem. 343-345.
- 16 Cannan, R.K. and Kibrick, A. (1938) J. Am. Chem. Soc. 60, 2314–2320.
- 17 Torrubia, J.O.A. and Garay, R. (1989) J. Cell. Physiol. 138, 316-322.
- 18 Kalfakakou, V. and Simons, T.J.B. (1990) J. Physiol. 421, 485-497.
- 19 Hoffmann, E.K. (1986) Biochim. Biophys. Acta 864, 1-31.
- 20 Nachshen, D.A. and Blaustein, M.P. (1979) Mol. Pharmacol. 16, 579-586.
- 21 Günther, T., Vormann, J., Cragoe, E.J., Jr. and Höllriegl, V. (1989) Magnesium-Bull. 11, 103-107.